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Abstract

We study a two-dimensional rotating Bose-Einstein condensate confined by an anharmonic
trap in the framework of the Gross-Pitaevksii theory. We consider a rapid rotation regime
close to the transition to a giant vortex state. It was proven in [CPRY3] that such a transition
occurs when the angular velocity is of order e*, with ¢=2 denoting the coefficient of the
nonlinear term in the Gross-Pitaevskii functional and £ < 1 (Thomas-Fermi regime). In this
paper we identify a finite value ). such that, if Q2 = Q0/64 with Qo > €, the condensate is in
the giant vortex phase. Under the same condition we prove a refined energy asymptotics and
an estimate of the winding number of any Gross-Pitaevskii minimizer.
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1 Introduction

Since the first experimental realization of Bose-Finstein (BE) condensation in the 90’s, BE conden-
sates and cold atoms in general have been extensively studied to investigate quantum properties
on almost macroscopic scales. Among the typical features of BE condensates, one of the most
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striking is certainly superfluidity, which has been studied in several experiments in the last years
by putting the quantum system under rotation and observing its response (see, e.g., the reviews
[Col [Fel]). Because of the quantum nature of BE condensates, the only possible change to the
condensate profile due to the imposed rotation is the nucleation of isolated defects, i.e., quantum
vortices. The generation of vortices has been observed in various experiments as well as the growth
of their number when the angular velocity increases [MCWDI| [RAVXK] [CHES]. For even larger
angular velocities the number of vortices becomes so large that they fill the bulk of the system
and arrange in a typical Abrikosov lattice [ARVK]. In presence of harmonic trapping the rotation
can not be arbitrarily fast, otherwise the centrifugal forces would break down the trapping and
system would eventually fly apart. On the opposite when the trapping contains some stronger
confinement, e.g., some anharmonic potential growing faster that |r|? for large |r|, regimes with
much more rapid rotation can in principle be reached. Unfortunately so far a loss of coherence of
the system has prevented the exploration of such regimes in the experiments [BSSD], although a
depression at the center of the trap has been observed for large angular velocities.

However it has been predicted [CDL[CDY2l [Fe2| [FIS, [FBl [KTU, [KBL [KF, [R1] that, besides the
nucleation of vortices, other phase transitions should be observed in rapid rotating condensates in
case of anharmonic confinement, with the occurrence of macroscopic defects or the transition to
giant vorter states: when the rotational velocity gets very large, the centrifugal forces constrain
the condensate in some thin annular region around a macroscopic hole and, if the rotation gets
even more rapid, vortices disappear from the bulk of the system, which seems then to carry a huge
circulation centered at the origin.

Although BE condensates are many-body quantum system composed of a number of atoms
ranging from few thousands to many millions, all the physical prediction about them are made by
using an effective theory, the Gross-Pitaevskii (GP) theory, namely a one-particle approximation
in which the energy of the system is given by a suitable nonlinear functional (see below). In
spite of its simplicity the agreement with experimental observations is quite good, specially in
the so called Thomas-Fermi regime, i.e., when the effective coupling becomes large. One of the
major advantages of GP theory is the possibility of run very sophisticated and accurate numerical
simulations [Danl [FJS, [KTU]. See also the webpage http://gpelab.math.cnrs.fr/, where one
can find an efficient free code for simulations of the GP energy or dynamics developed by X.
ANTOINE and R. DuBoscq [ADT] [AD2].

In the framework of the GP theory the energy of a two-dimensional rotating BE condensate in
physical units on the plane orthogonal to the rotational axis reads

. 4
ev = [ dr (B0 A W+ (V0 - $02,2) 0P+ ] )

where Q.o is the angular velocity, Aot = QotTey, 7 = |r|, with r = (2,y) € R? and ey =
(—y,x)/|r| is the unit vector in the transverse direction. The trapping potential is assumed to be
of the form

V(r):=kr® 4+ Q% r? (1.2)

osc

with £ > 0 and
2 < s < o0, (1.3)

i.e., the harmonic trapping is corrected by some anharmonic perturbation. Finally, we will focus
on the study of the Thomas-Fermi (TF) regime e — 0. The ground state energy of the system
is thus obtained by minimizing the functional (II]) under the normalization constraint ||¥||, = 1,
which amounts to require conservation of the particle number. Any minimizer is called condensate
wave function and its modulus square, i.e., the associated probability distribution, is what can be
observed experimentally.

The range of validity of the GP description as well the derivation of the GP effective theory
from the quantum mechanical description of a condensed Bose gas is an interesting topic on its own,
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which has been completely solved in the non-rotating case [LSYT] [LSSY]. In presence of rotation
on the other hand [LS] contains a derivation of the GP functional, which is however restricted to
bounded angular velocities and therefore not directly applicable to the case under discussion (see
also [BCPY] for further results). However we will not investigate further such questions and take
as a starting point the GP theory.

The mathematical physics literature contains now a large number of works studying the behav-
ior of the GP minimization problem in different asymptotic regimes of the angular velocity. If we
restrict the discussion to trapping potentials of the form (L2, three phase transitions have been
identified (see [CPRY3| for an extensive discussion or [CPRY4] for a more concise exposition),
corresponding to three critical values of the rotational velocity. Here we briefly sum up the most
relevant features of the physics of rotating condensates in anharmonic traps:

e for small angular velocities (.., the rotation has no effect on the condensate wave function,
. o . . GP . . . . . .
i.e., the minimizer of £’ coincides with the one in absence of rotation [AJRI;

e when the first critical speed ., ss;iz|log g| is crossed, one observes the nucleation of
quantum vortices, i.e., isolated zero of the condensate wave function [CR1];

o if Qo stays far from a second critical speed €., x €~ 513, the number of vortices might
increase but the profile of the condensate wave function is still close to the non-rotating
one. Close to Q, it is possible to derive the explicit distribution of vortices [CRI], which
eventually cover the whole bulk of the condensate. In this regime one expects that they
arrange in a regular (Abrikosov) lattice to minimize the interaction energy. This remains
an open question although it has been proven that the vorticity is uniformly distributed

[CPRY3;

o for (o x £7 2 a first change of the macroscopic profile of the condensate is observed, due
to the effect of the centrifugal forces. When the second critical speed €2, is crossed this
change has a dramatic effect since a macroscopic hole is created at the center of the trap.
However the vorticity remains uniform in the bulk of the system [CPRY3];

e for very rapid rotations above €.,, the bulk of the condensate becomes essentially annular

and its width shrinks as ¢ — 0. No further changes are however observed until a third critical
4(s—2)

speed ., oc e 572 is crossed. Then vortices are expelled from the bulk and the condensate

behaves as if the whole vorticity was concentrated at the origin of the trap [CPRY3| [CPRYH].

This is the giant vortex state that we plan to study in this paper.

So far we have only discussed condensates in anharmonic traps of the type ([2)) but a lot of
results are also available for other classes of trapping potentials. First of all the harmonic case has
been extensively studied both in the physics and mathematical literature and, while there exists
a first critical value of the angular velocity [IM1], TM2] corresponding to the occurrence of vortices
and the behavior of the condensate for not too rapid rotation is similar to the one described above
(vortex lattice, uniform distribution of vorticity, etc.), when the angular velocity approaches the
harmonic frequency of the trap, some new physical features come into play and fractional quantum
Hall states emerge [ABDL [ABN| [LSY2]. As we have already mentioned larger angular velocity
are not allowed because the system would otherwise be no longer trapped. See however [Ka] for
an alternative setting in which the trapping potential is suitably rescaled to reach fast rotation
regimes.

Even if we restrict to the anharmonic traps (L2) there is an extreme case which is of certain
interest, namely s = oo. Formally this corresponds to a confinement of the system to a two-
dimensional disc of unit radius. Naturally one has then to provide suitable boundary conditions

and both the Neumann [CDYT] [CY] [CRY] and Dirichlet [CPRYT] cases have been deeply studied.
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Indeed phase transitions analogous to the one described above has been found out even in this
extreme case, although the nature of the third one is much more subtle.

Let us now go back to the functional (LI} and introduce more convenient parameters: if we
set

Qphys = Q?ot - Qgsc’ (14)
and obviously assume that Qosc < Qyot, the trapping potential can be cast in the form
V(r) =kr® — %Qih_yer. (1.5)

Since we are interested in exploring a regime in which both ¢ — 0 and Qpnys — 00 (or, equivalently,
Qyot — 00), it is convenient to rescale units in the GP functional, in order to observe a non-trivial

behavior [CPRY3, Sect. IL.AJ: if one would naively minimize £  under the mass constraint

l¥| = 1, one would get trivially that the ground state energy diverges and the corresponding
minimizer tends to 0 pointwise. The appropriate rescaling depends however on the asymptotics of
Qpnys and, in the regime we want to explore (very fast rotation),

Qpnys > 5_%5 (1.6)
which leads to the rescaling (see [CPRY3| Sect. I.A])
r = RpX, U(r) = R '(x), Qphys = B2 €, Ag = Quzey, (1.7)

where R, stands for the unique minimum point of the potential (I3, i.e., explicitly

Q2 s_iz
R, = | —Rs . 1.8
( = ) 19)

Under the scaling (L), the GP functional (II]) becomes

Egisl V] = B2 [P [w] + (5 — 3) 97, (1.9)
with
ECP[y] := / dx {% (V- iAQ)¢|2 + Q2W (2)|v)* + g*2|w|4} ) (1.10)
R2
The rescaled potential
W(z):=21(*—1)— % (22 -1) (1.11)

is positive and has a unique minimum at x = 1, i.e., inf cp+ W(xz) = W (1) = 0. The rescaled
angular velocity € is related to the original physical quantities via

s k2
Q= (sk)" =20, (1.12)

and condition (L6]) becomes
Q> (1.13)

From now on we will focus on the analysis of the minimization of the functional (II0) on the
domain

6P .= {1/; € HY(R?) |[2*/%p € L*(R), |[¢], = 1}. (1.14)

We also set
ECP .= inf E°P[y), (1.15)
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and denote by 1" any minimizer, which is known to exist by standard arguments. In addition any
5P| which might be non-unique due to a breaking of the rotational symmetry and the occurrence
of isolated vortices, solves the variational equation

. _ 2
_ % (v _ ’LAQ)2 ’l/JGP + QQW((E)wGP 42 2 ‘wGP| wGP _ MGPwGP, (116)

where the chemical potential (Lagrange multiplier) is fixed by imposing the L?—normalization of
1/}GP:
pSt = B 4 5—2/ dx [$9F|*. (1.17)
R2

As discussed in details in [CPRY3 Sect. I.B], when € > 7! the condensate has already
crossed the second critical speed, i.e., its profile approaches a density supported on an annulus
centered in the origin, whose inner and outer radii tend to 1 as ¢ — 0. More precisely |[¢F|? is
close in L?, p < oo, to the TF profile

P (z) = i (T —e202W (2)] (1.18)

+ 3
with pTF the chemical potential fixed by the L'-normalization of the function. A straightforward
analysis shows indeed that p™¥ is compactly supported and supp(pT¥) = [7in, Tous] With [CPRY3)
Eq. (2.7)]

Tout — Tin = C (EQ)_2/3 <1, Lin/out = 1+ O( (EQ)_2/3 )’ (119)

as it can be proven by taking a Taylor expansion of W around z = 1 in (IL.I8) and imposing the
L' normalization.

The vortex structure of )T is richer: being well above the first critical speed Q., ~ |loge| for
the nucleation of vortices, the GP minimizer contains a very large number of vortices distributed
all over its support. More precisely one can prove that the vorticity is uniformly distributed in the
bulk of the condensate. As in [CPRY3| Eq. (1.42)], we denote by Ruux C supp(ptF) a suitable
annulus {x | v <z <2} with 25/ = Tou/in + o((e92)~2/3).

Theorem 1.1 ([CPRY3, Theorem 1.2]).
Ife™ ' <Q < e7* ase — 0, there exists a finite family of disjoint balls {B;} = {B(x;, 0;)} C Roulk,
i=1,...,N, such that

1. 0; <O (U7V2), 3 02 < (14 (e92)¥/3)71;
2. [P >0 on 8B, i=1,...,N.

Moreover, setting d; := deg{SY 0B;} and defining the vorticity measure as ji := 27 Zf;l d;6(x—
x;), then, for any set S C Ryui such that |0S| =0 and |S| > Q71| log(c?Q)[? as e — 0,

(S)
— — 1. 1.20
Q|S| e—0 ( )
The inner region {x € R? |z < ZCin} is presumably also filled with vortices but, because of the
exponential smallness of 1/GF there, the vortex structure in that region is practically inaccessible.
An important condition contained in Theorem [[.I] is the request

Q<e
The reason is that at angular velocities of that order the proof of Theorem [Tl might fail due to
the occurrence of a further phase transition, i.e., the transition to a giant vortex state. This paper
is precisely devoted to the investigation of such a transition.
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From the heuristic point of view it is quite simple to explain why one should expect a change in
the vortex structure when Q ~ ¢~%: from energy considerations it is easy to see that the average
size of the vortex core, i.e., the radius of the region around a vortex when [1/S|? is substantially
far from p™¥, is of order £2/3Q~1/3. The width of supp(p™™) is on the other hand of order (¢Q2)~2/3
and the two quantities are clearly of the same order when Q ~ ¢~%. Hence it must happen that for
Q = Qoe~* with Qg a large enough constant, the vortex core becomes larger that the bulk of the
condensate, i.e., vortices can no longer be accommodated in supp(p™¥). A non trivial phase factor
of 15" is however needed in order to compensate the effect of the rotation but, because no vortex
can occur in the bulk of the condensate, all the vorticity should get concentrated in the inner region
where 1)S" is exponentially small. In fact when this occurs it is impossible to distinguish from the
energetic point of view such a state with vortices distributed in the inner hole from a giant vortex
state of the form f(x)e™? n € Z.

Notice that although this might seem to suggest that the rotational symmetry is restored,
such a phenomenon never occurs as proven in [CPRY3, Theorem 1.6]. However the GP energy
is expected to be well approximated above the critical speed for the transition to a giant vortex
state by a one-dimensional energy functional obtained by evaluating £5F on functions of the form
f(z)e™?. In fact by some very simple observations one can show that n = || (1 + o(1)), where
| - | stands for the integer part. Let us now fix the angular velocity to be

Qo
Q: 5—4,

(1.21)
with €y a positive constant. Concerning the giant vortex regime, the main results proven in
[CPRY3] are stated below. We denote by Apyk a suitable annular layer around 2 = 1 containing
the bulk of the condensate (see next ([Z8) for a precise definition).

Theorem 1.2 ([CPRY3, Theorem 1.3]). B B
If Q is given by (LZI)), there exists a finite constant Qg such that for any Qo > Qo, no minimizer
ST has a zero inside Apu if € is sufficiently small.

Theorem 1.3 ([CPRY3, Theorem 1.4]).
If Q is given by (LZI) with Qo > Qo as in Theorem 2, then as € — d

ECP = ”;ﬁiglg@ [f(x)eitmﬂ +O(| loge[*/?). (1.22)

The first result, although being a consequence of the energy asymptotics (L22]), is the most relevant
one, since it shows the occurrence of the giant vortex transition for angular velocities of order e,
The precise mathematical statement is a pointwise estimate in the bulk region of [¢)4F| in terms of
a strictly positive function, i.e., the minimizer of the functional appearing on the r.h.s. of ([L22):
since the latter is bounded from below by a positive constant in the bulk and the difference is
pointwise small in ¢, also 1P can not vanish there.

For the analysis of the present paper it is very important to remark that both results hold true
if the angular velocity is expressed by (L2]]) with Qg large enough, namely no precise estimate is
derived there on the sharp value for the transition (see also Remark [23]). We indeed expect that
the giant vortex structure appears as soon as ) becomes (asymptotically) larger than

Q
Qe = —4c, (1.23)
€
for some explicit value €2.. In this paper we will indeed investigate such a question and exhibit a
finite value Q). which is a good candidate for the sharp constant. Actually we are going to see that

such a constant is a solution of some algebraic equation (see (Z77)) involving quantities relative to

We use here polar coordinates (z,9) € Rt x [0,7) on the plane.
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a limit problem independent of €. Although we have not proven it yet, we do expect that next
(270 has a unique solution, thus providing the sharp value of the critical velocityﬁ.

We outline here the structure of the paper. Next Section contains the main results, i.e., the
identification of the explicit value of the angular velocity for the transition to the giant vortex
state, together with an asymptotic expansion of the GP ground state energy which is actually
on the main ingredients of the proof of the above mentioned result. We also show that, as in
[CPRY3l Theorem 1.5], one can deduce a (better) estimate of the total winding number of any GP
minimizer.

Sections contains some preliminary estimates and a detailed analysis of the effective
functionals that will play a significant role throughout the proofs. In Section B4 we prove
the main properties of the cost function and in particular its positivity, which is the main
mathematical tool used in the proof of the giant vortex transition as in several other works
[CPRYT] [CPRYZ, CRIl [CRY].

Sections @ and [l are devoted to the proofs of the main results: we first (Section M) obtain the
asymptotic expansion of the GP energy by comparing suitable upper and lower bounds and then
(Section []) use such a result to deduce the pointwise estimate of [1/“F| showing the absence of
vortices in the bulk.

Notation: In the asymptotic analysis ¢ — 0 we will often use the Landau symbols: given a
positive function g, we say that

o f=0(g) (resp. = o(g)), if lim. o |f[/g < C < o0 (resp. = 0);
e f o g, whenever lim._, |f|/g = C, with 0 < C' < o0;
e if f >0, f < g is synonimous of f = o(g) and f > g simply means that g < f.

Sometimes we will use the notation O(|loge|>) to indicate a quantity of order |loge|® for some
finite but possibly large a. Since such a quantity will typically appear multiplied by powers of ¢,
the explicit value of a will be irrelevant.

We denote by B,(x) any two-dimensional ball centered in x and with radius ¢ and by [z] the
integer part of the real number . The symbol C will stand for a finite constant independent of ¢,
whose value might change from line to line.

Acknowledgements: The authors acknowledge the support of MIUR through the FIR grant
2013 “Condensed Matter in Mathematical Physics (COND-MATH)” (code RBFR13WAET).

2 Main Results

The first non trivial observation to improve the results proven in [CPRY3] is that instead of making
a special choice of the giant vortex winding number (|Q] in [CPRY3]), one might try and optimize
w.r.t. such a parameter, so obtaining a better candidate for the giant vortex state. This leads to
consider the functional obtained evaluating £9F on a giant vortex ansatz f(z)e’™” and minimize
w.r.t. both f and n to find out the optimal giant vortex phase, i.e., explicitly

€19l = /T7 dy (1+2%y) {1 Vg + Us)g? () + 2% o(n)g® () + 29 () } . (1)

where we have set for convenience n = Q + 3 and exploited the exponential fall off of ¥/CF to cut
the tails |y| > n o |loge|. The spatial coordinate has also been rescaled around |x| = 1 by setting

2Strictly speaking in order to show that €. is the sharp value for the transition one should also prove that, below
Qc, vortices are still present in the bulk of the condensate, as done in [R2] for hard anharmonic traps. We will come
back to this question later.
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x =1+ e%y. The potentials U and v are obtained via a Taylor expansion of W (z) around z = 1
and to the leading order in € are simply given by a shifted quadratic potential (see (B8]) and (B9
for their explicit expressions). We remark however that in Ug, the parameter § always appears
multiplied (at least) by €2, so showing that the correction is only lower order.

Setting 3" := inf) ;=1 €5"[f] and denoting by g the corresponding minimizer, which can be
proven to exist and be unique (up to multiplication by a phase factor) (see Proposition [31]), one
can subsequently minimize w.r.t. S € R, obtaining the energy E%", an optimal phase 5, and a
density g, i.e.,

E$ = %161]{{3 EF = E§ = &5 [94). (2.2)

In Subsection we will prove that 8, = O(1), so that, by the above argument, one expects
the functional £ EV to be close in the limit € — 0 to the following simplified giant vortex functional

2
e gl = / dy {% (9)° + SyPg* + ig‘*} ; (2.3)
R
with ground state energy E®' and minimizer gy, i.e.,
E® = inf E%[g| = £8[guv], 2.4
,nf £[g] [9av] (2.4)

where
v . {g € H'(R) | yg € L2(R), |l pocay = 1} .

Here we have denoted for short
o= QovVs+ 2. (2.5)
The minimizer gg, solves the variational equation

1 n

— 39"+ 309 + +9° = ¥y, (2.6)
where 8% = B + L [|gg |1
We are now in position to introduce the explicit value of the constant {2, appearing in the
critical value of the angular velocity €2.,, which can be expressed in terms of the critical quantities
associated with the effective one-dimensional functional £8V and, specifically, g, and p®": we
denote by €. the largest solution of the equation

4 1
Q = & _ g2 2.
0= T | 0] 27)

where the r.h.s. depends on )y through ©#" and gg,. The existence of such a solution is proven in
Proposition BTl Note that thanks to the estimate ||ggv||iO < mpgY (see BIF)), 2 > 0.
Before stating the main result of this paper, we have to define more precisely the region we
identify with the bulk of the condensate: we set for any a > 0
Apulk = {x € R? | Gev (””_1) > |10g5|_“} , (2.8)

£2

and observe that by the exponential decay proven in Proposition 3.3] H’L/JGPHLZ =1+o0(1),

(Abuik)
i.e., it certainly contains the bulk of the system.

Theorem 2.1 (Absence of vortices in Apy)-
IfQ = QO/€4 with Qg > Q. ase — 0, then no GP minimizer 1/JGP contains vortices in Apue. More
preciselyfor any x € Apuik

|4CP (x)| = ﬁ gev (52) (14 O log ). (2.9)
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Remark 2.1 (Giant vortex structure).

The pointwise estimate @3) suggests that [ST| is approzimately radial within Apa. As already
mentioned, this does not imply that the rotational symmetry is restored, since one expects that
|YCP| is far from being radial in the inner region x < xi,, where several vortices should presumably
be distributed more or less uniformly. In any case no GP minimizer is invariant under rotations
if Q is large enough [CPRYS3, Theorem 1.6], e.g., in the giant vortex regime.

Remark 2.2 (Third critical velocity).

In Proposition [311] we will prove that the equation (ZX) has a solution. Although we do not prove
it, we strongly believe that such a solution is in fact unique and identifies the sharp constant in the
value of the third critical speed.

More precisely Theorem [Z1 indicates that above ./e* the system undergoes the phase transition
to the giant vortex state and the bulk of the condensate becomes vortex free. Hence

Q.
QCg S 5_4

(2.10)
We actually expect that Qe, = Qc/e*, which obviously requires to prove that the solution to (21
1s unique. In addition one should also prove that for slower rotations vortices are still present in
the bulk of the system. We plan to attack such a problem in a future work, but here we want to
stress that the negativity of the cost function (see next Section[Z1]) for Qo < Qe is a very strong
indication that vortices are indeed convenient in this case and thus the sharp value of the critical
speed is precisely Q. /e*.

Remark 2.3 (Comparison with [CPRY3)).

We want here to discuss in more details the comparison between Theorem 2] and the analogous
result proven in [CPRY3, Theorem 1.3]: in principle, one could indeed derive an estimate of the
threshold Qq for the transition to the giant vortex state there and then it would be natural to compare
it with the explicit value found here. However we provide here some heuristic arguments showing
that such a comparison is actually not needed (see however next Remark[Z1] for futher details).
First of all an explicit estimate of Qo is not an easy task to achieve, due to the proof structure in
[CPRY3|: the result proven there is indeed obtained through an asyptotic analysis as Qo — oo and
one should then estimate all the coefficients of the error terms appearing in the formulae. Such
quantities ultimately depends on the pointwise estimate of the difference between the giant vortex
profile and the ground state of the harmonic oscillator given in [CPRYS3, Proposition 3.5], which
is not explicit at all.

However, even assuming that one could obtain a sharp value Qq, there are strong reasons to believe
that, unlike Q. (see also the previous Remark[Z2), it can not be the coefficient of the critical speed.
First of all the condition Qg > Qo guarantees the positivity of the vortex energy cost in [CPRY3]
(Remark [Z3) and therefore Qy > Q.. Moreover, as explained in [CPRY3] (see also [CPRYZ)),
when Qo — 00, another transition takes place, i.e., the condensate density profile goes from a
TF-like shape [LIR) to a gaussian function minimizing some suitable harmonic energy. The key
fact is that such a transition is expected to take place after the giant vortex one. Indeed here we
show that, for finite g, when the profile change has not yet occurred, the condensate is already
in a giant vortex state. On the opposite, a quick inspection to the proof in [CPRY3| reveals that
the transition to the giant vortex is proven there by imposing that the profile is already gaussian.
Hence any so obtained threshold value can not be meaningful.

Remark 2.4 (Giant vortex density).

We have formulated the pointwise estimate [29) with ggv, but an analogous statement holds true
with ggy replaced with g.. The error in [29) is indeed so large that one can not appreciate the
difference between the two reference profiles (see Proposition [34). Let us stress however that the
use of g as a reference profile in the proof is on the opposite crucial to obtain the result (compare,

e.g., the asymptotics ZI1) and (ZI2)).



CORREGGI, DIMONTE — Third Critical Speed for Rotating BECs 10

The absence of vortices proven in Theorem 1] and the pointwise estimate of /ST follows from a
refined result about the energy asymptotics in the same regime, that we state in the following

Theorem 2.2 (Energy asymptotics).
If Q = Qe with Qg > Qe as e — 0, then

ECF = +0(1). (2.11)

Remark 2.5 (Energy expansion).
The leading term ESY /e* contains the main energy contribution due to the inhomogeneity of the GP
profile together with the subleading kinetic energy of [SF|. The absence of vortices in Apui can
be read in the very small remainder term O(1). It is indeed interesting to compare 2ZI1l) with the
analogous result [CPRY3, Theorem 1.4], where the error term is much larger, i.e., O(|loge|?/?),
in addition to the fact that the result proven there holds true only for Qg large enough.

Notice however that the coefficient of the leading term E2¥ still depends on e, through the
boundaries of the integration domain as well as the optimal phase B, and the potential Ug,. If one
wanted to extract a proper asymptotic expansion then the natural statement would be

LY
A

ECP + O(|loge|™), (2.12)

with a much worse error term.

Thanks to the pointwise statement ([29), one can deduce that S does not vanish on Apy. In
particular for any R = 1+ O(e?), [»“T| > 0 on 0Bg. Hence it is possible to define the winding
number of S on OBy for any such R. A consequence of the energy asymptotics and the estimate
(23) is thus the following

Theorem 2.3 (Winding number).
Let Q = Qoe=* with Qo > Q. and R be any radius such that R =1+ O(g?) as e — 0, then

deg (v, 0Bg) = % +O(1). (2.13)

Note that the combination of the above result with the proof of the rotational symmetry breaking
given in [CPRY3, Theorem 1.6] implies the presence of vortices in the inner hole region where 1<%
is exponentially small.

2.1 Heuristics

Before discussing the proofs of the main results, we briefly expose the proof strategy from a heuristic
point of view, i.e., not tracking down the error terms and neglecting most technical points. As
usual the main result about the behavior of the condensate wave function is deduced from the
energy asymptotics (ZII)). We thus focus on such a proof.

Most of the relevant features of a fast rotating Bose-Einstein condensate were already discussed
in details in [CPRY3| and recalled in the Introduction. Here we take as a starting point the effective
functional ([ZI) which is expected to provide the leading order term in the energy asymptotics in
units e~%. Note that the ground state energy of SEV always provides an upper bound to ECF for
any integer phase, i.e., whenever Q+ 8 € Z. Actually the same upper bound can be proven to hold
true up to some small error term even if  + 3 is not an integer (see Section [.1]). Hence we can
neglect the upper bound part of the proof and discuss only the lower estimate to FCF.

A preliminary step which is already described in details in [CPRY3] is the restriction of the
integration in £4F to the bulk of the condensate, i.e., to an annulus centered in the origin with
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radius ~ 1 and width O(e?). This can be done by exploiting the exponential decay of ST
outside. From now on we will then assume that the integration in x is restricted to the annulus
1 — x| < O(?]1logel).

The main steps in the energy lower bound are then the following:

1. optimal giant vortex phase and profile: we minimize E}" w.r.t. to 8 € R and obtain a
minimizing B, and an associated density g,. It is crucial to observe that such a minimization
yields an additional equation involving g,, which is in fact nothing but the vanishing of the
first derivative of Egv w.r.t. 5. Such an equation will play a crucial role at point 4 below;

2. splitting of the energy: using a technique introduced in [LM], which is now rather standard,

r—
£2

we decouple G = —1—g, ( 1) u(x) and, exploiting the variational equation satisfied by

2me
Jx, We obtain

EGP _ E%V S[U]

2.14
et 2me?’ (2.14)
with u essentially minimizing the reduced energy functional

elu) = [ dxg? {31Vl + a60) 5ux) + Fed(L - )7}, (215)

where the “magnetic potential” a depends on 2 and 3, and j, is the superconducting current
ju(x) = £ (uVu* — u*Vu). (2.16)
Completing the lower bound means to show that E[u] is positive;

3. hydrodynamic estimate: we note that the “magnetic potential” is divergence free and there-
fore it exists a potential function F(x) such that 2¢%(x)a(x) = —V*+F(z). This trick was
first used in [CRY] in the context of the GP theory for rotating condensates. For later appli-
cations to the GL function see also [CR2, [CR3]. We can thus integrate by parts the second
term in (28] obtaining

/dx F(z) curl (jy) - (2.17)

At this stage we observe that since 8, = O(1) and it appears in (ZI]) always multiplied by
€2, a good approximation of the functional &5 can be obtained by taking the limit & — 0,
which yields the functional [2.3), with ground state energy E#¥ and minimizer g,,. We can
also replace F'(z) with its limiting counterpart F'8¥(z), which is in fact a negative function.
The last step to estimate (ZI7) is to use the trivial inequality |curl (j,)| < |Vu|® and the
negativity of F'8¥ to get the lower bound

Eu] > /dx (362, + F&") |Vul?, (2.18)

where we have also dropped the last positive term in ([2.13));

4. positivity of the cost function: the above lower bound suggests that any topological defect
of u should carry an energy cost given by the cost function

K& = g2, + F*. (2.19)

Positivity of such a function in the bulk would then imply that vortices are not energetically
favorable anywhere in the condensate. This is turn can be proven by direct inspection of the
function itself. First we observe that both g, and F'¢V are radial functions and we therefore
change coordinates z = 1 + &2y, so that in the new variable y the bulk of the condensate is
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basically the whole real line. In the new variable the explicit expression of F'8¥ (that we still
denote by F'8V) is

F&¥(y) = —2Q0 / b dtt g, (t). (2.20)

Y

Notice that by symmetryﬁ of ggv, F&(—00) = 0 and F&¥(y) < 0 for any y € R. The cost
function K& is therefore smooth and K®¥(4+o00) = 0, so that, if it becomes negative, it must
have a minimum. The derivative of K®" can be easily computed

K& (y) = gev ()95 () + 20995, (1), (2.21)

so that, by strict positivity of gev, at any critical point yg for K8V, one has

Iev (Y0) = —2Q0Y0gev (Y0)- (2.22)

Now using the variational equation for gy, and manipulating the expression [2.20) of the
potential function, it is possible to show that the cost function can be equivalently rewritten

as
2 Qo 22QO,UgV] 2 79012

2 —yg (2.23)

gv 2 Jev
and, inserting the condition ([Z22]) satisfied at any minimum point yo of K8, we get

1 QQ(S + 1) 2 QQ 2 . QQQ/LgV

K& = |-+ —" — 2 . 2.24
) =[5+ 2T o0 - P ). 20)

Using the parity of ge, as well as the variational equation, one can prove that the quantity
between brackets on the r.h.s. of the expression above is positive if and only if it is positive
at the origin (see Proposition [310)

1 Q

S 200200
2+m29gv()

200 8" 1 2 1 2 g
o e R v —ugl >0 <~— Qg > Q. (2.25
a2 2+Qo(s+2> 2m lgelloc =¥ | 2 02 G- (225)

Once the energy asymptotics is proven, the pointwise estimate of |G|, which allows to exclude
the presence of vortices in the bulk for ¢ > €, is a simple consequence: putting back the positive
term we have dropped in the lower bound, one first obtains an estimate of the region where |u| can
differ from 1. Then combining this with an L™ estimate of the gradient of u, one gets the result.

It is worth mentioning at this stage a technical difference with previous approaches. Indeed in
[CPRY3] two potential functions were actually used instead of one, in order to get rid of boundary
terms coming from the integration by parts described at step 3 (see the discussion in [CPRY3]
Sect. C]). Here on the opposite we are able to use only one potential function by estimating in a
more refined way the boundary terms (compare, e.g., with next {I6)). As in [CPRY3| we also
exploit the symmetry properties of the profile g,, which is to a very good approximation invariant
under reflections w.r.t. the origin.

3 Preliminary Estimates

Here we collect some useful technical results as well as the main properties of the effective function-
als involved in the analysis. An important piece of information is contained in Section [3.4] where
we prove the positivity of the cost function.

3Unlike ggv, the profile gy« is not exactly symmetric, but F satisfies analogous properties thanks to the optimality
condition of By, i.e., the additional equation involving g, and B« which was mentioned at point 1.
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3.1 Giant Vortex Functionals
We start by describing the derivation of the functional (1) from the GP energy. As anticipated in

Section Blthe idea is to evaluate the energy of a trial state of the form f(x)e™” in polar coordinates
x = (z,v) and with n = Q + 5. In addition we assume that f is real as it will be for any giant

vortex profile. The result of a rather simple computation is
) o0 2
ECP[fei?) = 27r/0 do {% IV + 02 {% (- 22) &+ W(:c)} 2+ E%f‘*} RENERY)

Exploiting the exponential smallness of 1S outside of the bulk of the condensate proven in
[CPRY3] and recalled in next Proposition[B.3, we can restrict the integration domain to the annulus

A, ={xeR®: 1 —x| <}, 7= 2\’}‘;To|10g5|, (3.2)

where 19 > 0 is an arbitrary finite constant and the prefactor in the definition of 77 has been chosen
of that form for further convenience. Thanks to ([B.19)

PP (x) = O(e™), for any x ¢ A, (3.3)

and the restriction is thus well motivated. In addition we will also see that a similar estimate
holds true for any giant vortex profile. In terms of the one-dimensional functional (B1]) we are
then integrating in the interval [1 — 21,1 + 2] and a change of variable is called for: setting

r=1+¢y, g(y) = V2me f(1+€%y) (3.4)

so that g is normalized irl] L% = L?([-n,n], (1 + £2y)dy), we obtain the energy

N 1 [
£ g) = 5_4/ dy (1+ %) {3 (¢ +
n
2
+e'0? [% (1 +e%y — %) +W(1+ szy)] 9>+ %g“} . (3.5)
Now we expand W (1 + £2y) in Taylor series around y = 0 to get

W(L+e%) = s52ety? + LR 0,3 4 So(y) (3.6)

where p(y) = O(y*). Using this fact we can rewrite the potential in (B3] as (recall that o? =
Q2(s+2))

+W(L+e%y)| =Us(y) +*yv(y), (3.7)

402 (252y764ﬂ/90+s4y2)2
2(1+e%y)?

with v independent of 5 and of lower order w.r.t. to Ug. Explicitly

2
Ulg(y) = m%y)? (%yQ _ QQQEQﬁy — Q054ﬁy2 + 35462) : (3.8)
03 —1)e? —1)(s—2)Q3 203
v(y) == O(S(ji?y)gf v, )(2 % | Eygow(y). (3.9)

Some trivial estimate using the Taylor expansion (B.6) implies that for y € [—n, ]

Us(y) = 30%y> + O (e2(1 + |B])n + £ B?), (3.10)

4We set in fact L} := LP([—n,n], (1 + £2y)dy) for any 1 < p < oc.
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which shows that, if, e.g., 8 is uniformly bounded in &, the potential Ug(y) is harmonic up to
corrections of higher order in €. Alternatively one can think of Ug as a shifted harmonic oscillator
by writing

5 N\ 2
Us(y) = 3 (y — 22252) " + O(c*|ln® + £*?). (3.11)

In fact, since the optimal value of 8 we are going to choose is O(1), both representations are
equivalent since the shift will be O(g?). Concerning the rest v(y) one trivially has the upper bound

lv(y)| < Ca, + O(e™n), (3.12)

for y € [-n,n] and with a finite constant Cq,. The rest in the above expression is a consequence
of the bound |p(y)| < C|y|*, which follows from the Taylor expansion (B.6]).
In conclusion we have recovered the expression ([Z1)), i.e.,

n
E§'lg] = / dy (1+€%y) {% (9")? + Us(y)g® + e2yPv(y)g® + %94} :
-n

We now discuss the minimization of such a function w.r.t. g and for that purpose we have to
identify the proper minimization domain, i.e.,

A {g eH'(=n,n)[g=9", llgll> = 1}- (3.13)
The ground state energy of €5 is defined as

Egv = inf ng[] (3.14)

9€25”

Notice that the assumption g = g¢*, i.e., reality of the argument, does not imply any loss of
generality because the ground state can always be chosen real (see next Proposition).

Proposition 3.1 (Minimization of Egv).
There exists a minimizer gs € 95" of @) that is unique up to a sign, radial and can be chosen
strictly positive. In addition gz € C°°(—n,n) and it solves the variational equation

1 1

396 — sy 95 + Us(W)gs + €2y°v(y)gs + 795 = 1s9s (3.15)

with Neumann boundary conditions gi(£n) = 0 and pg = E" + 311951174
Finally gg has a unique mazimum point at yg and it decreases monotonically anywhere else.

Proof. Existence and uniqueness of the minimizer follow from strict convexity of the functional
Egv[\/ﬁ] with respect to the density p = g?. The variational equation ([B.I5)) is satisfied at least
in weak sense. Then one deduces the strict positivity of gg noticing that it is actually a ground
state of a suitable one-dimensional Schrodinger operator. The equality for pg follows integrating
the (@I5) and recalling the fact that gg has L?-norm equal to one. Finally a trivial bootstrap
argument allows to deduce smoothness of gg and therefore that (3.I3]) is solved in a classical sense.

The only non-trivial result is the one about the existence of the a single maximum point for
gp. However it follows from the property of the potential Ug(y) + e*y3v(y): going back to the
expression of the potential in ([3]), one can easily compute, with z = 1 + 2y,

ox 3

2,3
2 [Usy) +°*o(y)] 1 [merg B (1 N gm)?] |
which vanishes at a single point ypot, i.e., where

2
4
1+ %ypor = (1 + 890) =1+ (s+2>9 R GIDE
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The Taylor expansion also shows that

2
Yoor = 2B (14 O(e*B)).

The monotonicity property of gz can then be obtained by a simple rearrangement argument (see,
e.g., [CPRY1] Proposition 2.2]): since the potential has a single maximum point, if gg had more
than one maximum besides y3, one could move mass from the further maximum to the minimum
in between and lower the energy. Since g is a minimizer one gets a contradiction. |

Another effective one-dimensional functional which is going to play an important role in the analysis
is ([Z3), i.e., the formal limit ¢ — 0 of £8", assuming that 8 = o(e~2):

E8[g) = /Rdy {% (0)° + Sy2g® + %94} :
The minimization domain is in this case given by

7= = {ge H'®) |9 =¢" Il o) = 1} (3.16)
and the ground state energy will be denoted by E8" = inf jc gev £8¥]g].

Proposition 3.2 (Minimization of £8V).
There exists a minimizer gg, € 227 of (23) that is unique up to a sign, radial and can be choose
strictly positive. In addition gg, € C*°(R) and it solves the variational equation

2
— 390+ SV er + 202, = 1 gev (3.17)
with p8¥ = B + 3-||gg||3.
Finally gy is even w.r.t. the origin and has only one mazimum at y = 0, which fulfills the
inequality
2
9 (0) = llgevll5, < mus™. (3.18)

Proof. See the proof of Proposition Bl Parity of gs is a trivial consequence of the parity of the
potential. The inequality ([B.I8) follows from direct inspection of the variational equation BI7):
at any maximum point gé’v < 0, which immediately implies the result. O

3.2 Estimates of the Gross-Pitaevskii and Giant Vortex Profiles

In this Section we collect several technical estimates of the profiles involved in the discussion. Such
estimates will play a key role in the proofs but can be typically obtained by standard techniques
in functional analysis.

We start by recalling a result which was in fact proven in [CPRY3] Propositions 3.1 and 3.2]:
let 9 be the parameter appearing in the definition [B.2) of A,, then

Proposition 3.3 (Exponential decay of &F).
If Q = Qq/e?, there exists two finite constants ¢,C > 0 (independent of no) such that, for any
x ¢ Ay,

CTIZ
WP ()| < E—C;max {E%,exp{@uﬂ}} (3.19)

In particular the above result implies that by taking 79 large enough we can make 1S arbitrarily
small outside A,,. This fact will be crucial in restricting the computation of the GP energy within
A,,. Notice also that as soon as |1 — z| > e2|logel, °F = O(e>).

Let us now focus on the giant vortex profiles. Before stating the main technical estimates we
first formulate a simple preliminary bound on the giant vortex energy E7":
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Proposition 3.4 (Preliminary bound on Egv).
IfB=0(e7%) ase — 0, then

Egv = O(1), ug = O(1). (3.20)
Proof. Since E7" is positive (compare with (B.3)), it suffices to prove a suitable upper bound: to
that purpose one can simply evaluate the functional £ EV on the ground state of the one-dimensional

harmonic oscillator with frequency a. The result on pg follows from the trivial estimates Egv <
g < QEEV. O

The giant vortex profile gz decays exponentially for large |y| and one can actually show that this
decay captures the correct asymptotics of gg:

Proposition 3.5 (Pointwise estimates of gg).
If =0 (5_2) as € — 0, then there exists a finite constant C' such that

95(y) < Ce= 2V 0lyl, so that ga(£n) = O (™). (3.21)

If B = O(1) then there exist two finite constants C1,Co > 0 such that the following inequalities
hold true

Cillgslzs exp {=5y} < ga(y) < Caexp {-§y?}. (3.22)

Proof. The results are proven by means of standard super- and sub-solution techniques. We spell
however the proofs in full details for the sake of clarity.
To prove ([B2]]) it is somehow more convenient to go back to the variational equation satisfied

by fs(z) = (vV2me)~t gs((z —1)/e?), ie.,
, 2
— 38— fh+ 3k (902 - %) fs +QPW () fs + =3 = znsfs (3.23)

The first simple observation is that by positivity of fz and W(z), we get
3= kg5 < & (s —223) f,

which, by negativity of the second derivative of fg at any maximum point of fg, immediately
implies the upper bound

2
Hfﬂ”LOO(_An) < E%,ug,

which in terms of gz becomes, via B20) (here we are assuming that 3 = O(e72)),
I3l = O1). (3.24)

In order to prove (B.2]]) we will provide an explicit supersolution to the equation ([.23). Notice
that the first two terms of the equation form the two-dimensional Laplacian, i.e., for any radial
function f, —Af = —%& (rf"). We will use this fact to construct a supersolution in dimension
two. Let then a > 0 be a parameter independent of € that is going to be chosen later and consider
the two-dimensional region

A:=B1_42(0)NA, = {X € R? ‘ 1—-ne?<z<1-— a52}. (3.25)

Inside A one has the lower bound

W) > 52 (@ =17+ 0 (Jo - 11°) > E52a% + 0 (r'e%) > Coa®e!
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with Cy > 0, so that (8:23)) and [B.20)) yield
—30fs < Zrusfs — PW(@)fs < & (C1 — Q5Coa®) f5

where also C; > 0. If now we pick a? > C%UCQIQ, we get that fg is a subsolution of the following
0
differential problem
— 3Af 4+ 1Coa?Q2e f = 0. (3.26)

To get rid of the inner boundary we now extend fg to the whole ball By_,.2(0) in a smooth (in
fact at least C?) way. We denote by f such a new function and we require that f () = 0 for
r <1—2e%pand

— SAf 4+ 1Coa?Q2%e f <0, (3.27)
for any x € B;_,.2(0). We omit the explicit details of such a construction for the sake of brevity.
A supersolution to the same problem can be constructed by taking

Foup(@) = Co| fs]|oce™V(=2%)

with C, a constant to be suitably chosen:
— A foup + 3C0a>Q%e fop = & (—2\/5 — 2022 + COQOa2Q) fsup > 0,

if we choose a? > ﬁ. The constant C, is then used to guarantees that fs,, satisfies the proper
boundary conditions. In order to apply the maximum principle (see, e.g., [El § 6.4.1, Theorem 2]),

we need that f(2) < foup(z) on dB;_,.2(0), which holds true if C, > €2V,
Founlos, () = Call fallce™ Do(2-as") > Tolos, .0

l—ae

Hence we conclude that f < fsup in the whole B;_,.2(0), and therefore, using the monotonicity
of feup, f3 < feup in the whole region B1(0) N A,. Going back to gz and using [B.24), we obtain
B2T) in B1(0)NA,. To extend the result to the complementary region, one can use a very similar
argument with the trivial change 22 — 1 — 1 — 22 in the supersolution.

For the refined estimates ([8:22), we consider the variational equation (IH) for a < |y| < n,

with a > 0 such that a® > 2”—2 and ¢ small enough, which imply
«

2 2
Us(y) +e*y°0(y) — us = Sy> — us + O (20°) = Sy
and therefore in that region gg is a subsolution of the equation

2 2
~ 40~ i+ 50 =0 (825

As before we extend gg to the whole region |y| > a in a C? way and preserving the differential
inequality satisfied in a < |y| <, i.e.,

1

2 2
—2¢" ey 9+ YIS0

Again we skip the details for brevity.
Now for some C' > 0 to be fixed later the following function

2

gsup(y) = Ce 1Y

is a supersolution to [B:28): for € small enough

1 2 2
7§g;q1p - mg;up + Ot??ﬁgsup = (% =+ 4(%?274)) Jsup = 0.
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aa? .
Choosing the C' > ||gglloce 4 to ensure that gg(+a) < gsup(a), we get the upper estimate.
Analogously we can choose C' > 0 in such a way that

-
Gsub ‘= Ce™2Y

is a subsolution to (FI): first one notes that
§ < np— zlgsllzs + O (e*n)

which follows from the fact that the harmonic oscillator on the real line is bounded from below by
«/2; then using this inequality in (3I3]), we obtain
2
— 590, — sy S + Us () goub + £24°0(y) gt + 2050, — 1159sub
2
aye

2
= % — Mg+ %gs2ub + Uﬂ(y) - %y2 + 2(1+e2y) + 52937}(9)} Jsub

< |2 (B — lasllty ) + O (%) ] gun < 0.

if we pick C' < ||gg||2.. To conclude we use the fact that geu, goes to 0 as |y| goes to infinity:
n

indeed it is sufficient to observe that there certainly exists a point § > 0 such that g, (+7) =

min {gg (1), gs(—n)} and

N 98(y) Iyl <,
9ly) = 9s(n)  n<y<y,
gs(—=n) —y<y<-mn,
is a supersolution to BIH), satisfying g(£g7) > gsun(£y). Hence g, < g for any |y| < g, which
implies the lower estimate ([B:22]) for |y| < 7. O

We conclude this Section by stating analogous pointwise estimate for the limiting profile gg.:

Proposition 3.6 (Pointwise estimates of ggv ).
There exists a finite constant C' > 0 such that

llggv |7 exp {—5y*} < gev(y) < Cexp {—5y}. (3.29)

Proof. The estimate can be proven exactly as (3.22]) in PropositionB.5land we skip the details. O

3.3 Optimal Giant Vortex Phase and Profile

In this Section we investigate the minimization of Egv w.r.t. S € R. The main result is the
following

Proposition 3.7 (Optimal phase).
For € small enough there exists a unique minimizer B, € R such that

ES = ég%Egv =Ej. (3.30)

Such an optimal phase is explicitly given by
2

— % [(s=2)V — 2 31
By ) (s =2)V —=Q+ 0 (%], (3.31)
where we set g, := gg, and
V-_O‘Q/nd 242 Q-—l/nd 4 (3.32)
T 2 yy g*a T 27‘[‘ yg* .

-n -n
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Proof. The existence of a minimizer (3, is guaranteed from the fact that
Us(y) = m 2(53;-132)5452 - 9054577}

which implies that lim|g o Ef" = 400 (recall that s > 2). By the same lower bound on the
potential together with the trivial bound E¥" < E§" = O(1), we also deduce that 5, = O (5_2).

In order to find the explicit expression of ,, we first observe that by standard arguments Egv
is a smooth function of 5 and therefore by the Feynman-Hellmann principleﬁ

@ﬂ?:@M%mef:@ﬂaﬁ@ﬂ*NW*Qw@hf%”%%- (3.33)
Since B, is a minimizer, we must have 9 E5"| =0, ie.,
s <g* [y g*>77 — 20 <g* ey g*>n — Qpe? <g* T g*>n =0.  (334)
We compute the first and last terms of the expression above:
< S > —1+0(2) < S W > - 0@ (3.35)
g* (1+62y)2 g* n ] g* (1+€2y)2y g* " a2 . .

Indeed thanks to the exponential decay proven in ([B.21)), one can easily realize that

n
/ dy |y|* g2 = O(1), for any k < oco. (3.36)

-n

In fact an analogous estimate holds true if g, is replaced with ¢/, in particular

n
2
| vy @) = 0. (337)
-
To see this it suffices to integrate by parts and use the variational equation [BI3]) to go back to
an expression involving only g, and there one can use the above estimate. We omit the details for
the sake of brevity. Notice that at this stage we are implicitly exploiting the bound 3, = O(e72),
which is among the hypothesis of Proposition 3.5l Next we integrate by parts the second term in

B34) to get

(s

n
1 _ 1 2
(HEZy)zy‘ gak>77 = / Ay 153 Y 9
-7
n K 2V
— 1 2 2 1 2 2
- |:2(1+€2y) Y g*i| - - /—77 dy Itely ) g*gi + ? (1 +0 (E ))

where the boundary terms (first term on the r.h.s. of the expression above) can be included in the

5The notation ([}, stands for the scalar product in L2([—n,n], (1 + €2y)dy).
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remainder O(g?) if we choose 19 > 2 (see again ([3.21])). For the rest we can compute

n 2 n
- / Ay 155 ¥ 9490 = —— / dy (1+€%y) Up, (y)99.
=N n

2 /77 4 20062 B,y + Qoe'Buy? — 218,
042 ) y 1+€2y *g*

1 n 2 n
= g/ dy (1+¢%) 0, {—% (90)° + =gt — u*gf} + = / dy (1+¢%) v*v(y)dyg?
-n -n

g2 [ o 2B, [T | 2Qoy+ Qoe*y? — 126,
— 5/ndy (92)" — / dy 2 dygs =

a? ), 1+ &2y *
g2 [ e2(s+ 1)V 2e2Q0B,
=5y {50 — gt gl } - S+ T 4 O(EB) + O () =
-n

2
5
== [K—Q+p— (s+ 1)V 4208, + O (£°B,) + O ()],
where we have made use repeatedly of (330) and exploited the identity
(v 0()" = §0(s + y* + Oy ).

We have also set )

T := 5/_7; dy (g.)°. (3.38)

Hence
2

g*>n = =5 [FT = sV = Q4 1 + 208, + 0 (28.) + O ()] (3.39)

(s

and plugging this together with (335) into (3.34)), we obtain

1

s—2
s+2

since p, = T+V +2Q + O(e?) (see (B.36) and ([337)). The expression ([F31)) is then recovered. [

814+ 0(E) + 22 (s~ 2)V ~ @+ 0(2) =0,

Along the proof we have also proven in (3:34) that
n
/ dy 172y (y +3e%° — ﬁﬁﬂ*) 92 =0, (3.40)
=

which, thanks to the result about (,, also implies that

{9+ [yl g+), = O(?), (3.41)

i.e., the profile g, is almost symmetric w.r.t. the origin.

In fact this latter information can be deduced also by looking at the relation between the
functional £ and its minimization and the limiting model £¢. From now on we fix § equal to
the optimal value f,.

Before discussing this question further we have however to state an useful estimate on g;.

Lemma 3.1.
There exists a finite constant C > 0 such that for any y € [—n,n)

9:W)] < Cn’gu(y). (3.42)
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Proof. 1t suffices to integrate the variational equation (.I5) between y > ys, and n or —n and
y < yg, (recall that yg, stands for the unique maximum point of g,): let us assume that y > yg,
then by positivity of g,

n 2 v
H1ot )| = ~5i0) = [ dt {~ e+ (202 + U (0 + 260(0) - i) 0.}
Yy
n 4 2
Yy

Now given that the quantity between brackets can be easily bounded from above by C7?, it only
remains to use the monotonicity of g, to conclude the proof. |

We are now in position to prove the first result about the energy difference E¢" — E2Y. As a matter
of fact this will involve a corresponding statement about the closeness of g2 to ggv in L2. We recall
the expressions of the energy functionals

n
el = [ (420 {3007+ Un g + 0Polw)g? + o'}

-n

£5]g] = / dy {£ (9 + 5 v%0* + Fo'} -
R

Proposition 3.8 (Estimate of E§" — E8Y).
Ase —0 )
E8 = E8 + O (54777) , ||gf — ggan% =0 (64777) . (3.44)

Proof. We test the two functionals ng and £8Y on suitable test functions. Let us first regularize
gx outside [—7, 7] to make it an admissible test function for £8V: we define

98(y)s lyl <m,
ri(y), n<y<2n,
r2(y), —2n<y<n,
0, |y| > 2n,

Gtrial (y) = Ce

with 7 » positive smooth functions chosen in such a way that geiar is at least C?. We also assume
that both functions r 2 are also monotonically decreasing. The normalization constant c., which
ensures that ||geriall ;2 ®) = 1, can be easily estimated: assuming that 79 > 2, we have

ce =14+ 0(h), (3.45)
since, e.g.,

2n
/ dy 73 (y) < ngi(n) = O(ne*™).
n

Notice also that we need to use (41 to reconstruct the norm of g,:

n n n
/ Ay G = ¢ / dy (14 €%y) g2 + c2e? / dyy gl =c2+0(").
-n n n

Now we estimate

n 2
55 < 5 gl = ¢ [y {30 + 2203 + b} + O
-n
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Thanks to (B:41) we can easily estimate the error we make by replacing O‘;yQ with Ug + e%y%v(y):
denoting for short (f) := (g« |f| g+ ), we have

2
22— 280 *>
<g 7y = Usly) —eyol)ge) L
_ oy’ (24e%y) 28 (90 Qnely — Le2 2.3 — O (et 2/.3
= (9 | —3a7e7y +(1+€2y)2( oy + Qoe 362B.) —2Pu(y)| g« ) = O (e* + 2 (y7)),
so that
E®Y < E® + 0 (' + % (y*)), (3.46)

where we have also used ([.20), which in turn requires 3, = O(e72).
The trial state for the functional Eg‘: is simply the truncation of ggv, i.e., ccggv, Where now the
normalization factor can be estimated in this case as

ce =14 0(e™), (3.47)

since by symmetry of gg
n 0o
/ dy (1+e%y) g5, =1 —2/ dy g2, = 14 O(e™),
-n n

where we have used the pointwise estimate ([B.29) on gy, and the fact that the integral of a
gaussian, i.e., the error function, is bounded by the value of the gaussian at the boundary, i.e.,
exp{—c|loge|?} = O(e™) (see, e.g., [AS, Eq. (5.1.19)]). Then we have

n
B < EF[ccga] = (1+ (9(€°°))/ dy (1+%y) {5(95)° + Us, ()93, + **0(y)92, + 5=9av }
-n

n 2
— [ ay{3e ) + b+ Fob ) +OE) = B 4 O, (3.9

-7
Putting together (3.40) with (3.4]), we obtain
E® = FE& 4+ 0 (' + % (y%)) . (3.49)

Now we decouple the energy E&V: first we bound from below E&¥ as
n 2
B > / dy (1+22) {3 (9> + S uP02, + £k}
-n
where we have just dropped some positive quantities and used the symmetry of go,. Then we set

ggv = ug, for some unknown smooth function u (recall that g, never vanishes in [—7, 7]) and using
the variational equation for g, as well as Neumann boundary conditions, we obtain

n 2
E® > E¥ +/ dy (1+¢%y) g2 {%(U’)2 + (%zﬁ —Ug, (y) — €2y3v(y)) u? + 592 (1— u2)2}
—-n

"
- %52/ dy u?g.g. + O(™).
-n

Then we estimate

n
‘/ dy (1+2%) (97 - Us. () — 2%0()) g%
-n

n
< 062/ dy [ylg? |1 — u?|
n

n
+ ‘/ dy (1+€%y) (%2# —Up, (y) — €2y3v(y)) 92
-n

< Cepl? lgZ(1— uQ)HL% +0 (e (y®) + ),
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and by [B42) (notice that the factor 1 + €%y is uniformly bounded from above and below by a
constant)

K 2
‘ / dy u®g.g.
-n

which imply by dropping the kinetic term

n n
:/ dy »1—u2||g*||g;|+0<s4>scwf’/ dy [1— 2| g? + O
n n

< 07]7/2 Hgf(l - UQ)HL% +0(eY),

B® > BE + L lga|7: + 1 9201 - uQ)Hi% = O ||gi(1 = )|, + O (2 (v*) +&7)
> BE 4+ 2 (|l020 — )| 5 — O=27/2)” + 0 (2 (y7) +<h7) . (3.50)
If we compare what we have obtained with (B43), we conclude that
lg? = g2.I17 = o2 =[5, = O (2 () + ). (3.51)

but on the other hand

n
'/ dy y° g7
-n

n
y/dwﬂﬁg@scwwﬁg@m, (3.52)
777 n

so that finally
2
92~ g2, = 0 ().

This proves the second inequality in [3:44]) but the first is obtained by replacing the above estimate

into (320). O

It is interesting to remark that a by-product of the proof of Proposition B8 is that (see (3.52))

(9+]9°| 9+ ) = O(e™"), (3.53)

which in combination with (B4I]) is a strong indication of g, being symmetric w.r.t. the origin
with a very high precision. In fact this is also made apparent by the estimate of the difference
9« — YGgv-

The L*-statement in ([3.44) can indeed be improved to an L>-one, showing that g, and gey
are pointwise close. The price to pay to have a result in a stronger norm is the restriction of the
region under consideration to the annulus A, C A, defined as

A = {y ER | gev(y) = 7%} (3.54)

for some v > 0 independent of e. Note that thanks to the pointwise estimates [B29) and the
monotonicity of gev,

Ay = [=yn.ynl,  with g, > 1. (3.55)

Proposition 3.9 (Pointwise estimate of g, — ggv).
Ase — 0 and for any v > 0

74ay
g — ggVHLDO(_Zn> =0 (5277 2 ) . (3.56)
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Proof. Going back to [B.50) and retaining the kinetic term, we see that we obtain via ([B.44]) the
upper bound
2
lgetll 72 = O™, (3.57)

where we recall that u = ggv/g«. Now let us introduce the set

Ay = {yeR\g*(y)Z 2}7}

so that above inequality together with (344) and the bound |1 — u| < |1 — u?| imply

4 7+21/)
’

2 v
220, = O™ Ty,

1— U”iq,@) = 0(5477

Then it suffices to use Sobolev inequality in one-dimension:
2 2 2 v
1= ulfe g, < C (W0, + 11— ullaz,) = O (7). (3.58)

Finally to obtain the result it remains to observe that jn C .Zn, because in the region where
g« > 1/(2n"), by the pointwise estimate, g is larger than (1 + o(1))/(21"), which is obviously
satisfied if ggv > 1/1". O

The above bound shows that inside ,1,7 one can estimate the distance of g, from a perfectly even
function: for any y € A,

9:(—=y) = g.(y) + O (5277”24") :

which is perfectly compatible with the estimates (341]) and (B.53).
Another useful consequence of the above pointwise statement is the following

Corollary 3.1 (Maximum point of g,).
Let yg, be the unique mazimum point of g., then as e = 0

ys, = 0 (2""). (3.59)

Proof. The result is a straightforward consequence of the pointwise estimate (3.56) and the prop-
erties of ggv (see Proposition B.2)). O

3.4 Critical Velocity and Positivity of the Cost Function

From now we fix the phase to be optimal one, i.e., 8 = 4. The potential function is defined as
I 2 2
Fy):=—= [ dt(1+¢7) 0pUs(t)|5_p, 9x

g2 -
v 1 1 €28
=20 dt t+ =22 — =X ) 42 .
o/ 1+52t<+25 290)9* (3.60)

-7

The main object under investigation is the cost function

K(y) = 392(y) + F(y), (3.61)

and our main goal in this Section is to prove that it is positive in the bulk of the condensate when
Qp > Q. To this purpose we will clearly have to investigate the equation (Z7) and prove at least
that there exists a positive solution to it. Notice the equation (27 involves only quantities relative
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to the limiting functional £8¥ and is independent of . We thus introduce the analogue of (B.GII)
for the limiting case, i.e., the function (Z19)

K& = 393, + F®",

where F8V is defined in (220):

o) = 200 [ detg o).

Y

We will start by studying the positivity of [2.J9) and show that the condition Q¢ > ., where
the latter is defined as the biggest solution to (Z7]), is sufficient to deduce that K8 (y) > 0 for any
y € R. In the second part of the Section we will turn our attention to the cost function (61l and
prove that the same condition on )y guarantees positivity of K as well.

We first observe that F'®¥ is a negative function vanishing at +oco: at y = 400 it is obvious, at
—oo it is a consequence of parity of g;,. By this property one can rewrite

Yy
F&(y) = 290/ dtt g3, (t).

— 00

In fact there is another explicit expression of F'&¥, which can be obtained by using the variational

equation (BI7):

F&(y) = —Qo / dt 9,(t%) g3y = Qoy’gay (y) + 2 / dt 1% ggv g,
Yy

Y

40, [

= Qoy’05,(v) + — / dt gl [398, — 295, + 18V gy ]
Yy

218V

2
= — iy (O ) + [ Q00 + 5oty 02 ) — o2t | 92 ), (3.62)

where we have used the exponential decay at oo of ge, to cancel the missing boundary terms.
Consequently we can rewrite K&¥ as

K= (y) = — gy (00, )" + [% + QY + mortery I (¥) — Q—f{%m} e (¥). (3.63)
The main result about K®" is the following
Proposition 3.10 (Positivity of K8).
Let Qg > 0, then
K& (y) >0 for anyy € R < Qg > si? (18" — %ggv(O)] . (3.64)

Moreover if the strict inequality is verified on the r.h.s., K8 (y) > 0 for any vy finite.

Remark 3.1 (Comparison with [CPRY3]).

Despite the use of two different potential functions F and Fy in [CPRYJ], one should realize that
[CPRY3, Lemma 3.5] yields the poitwise positivity of a cost function, which is the analogue of K&
in the asymptotic regime Qo > 1. In fact it can be easily seen that the cost function in [CPRYJ]
1s bounded from below by K& and therefore the positivity of the latter implies the positivity of the
first. Hence any threshold Qo one might deduce there must be larger than Q. by definition.

Proof. One side of the statement, i.e., the fact that the condition K8(0) > 0 is necessary for the
positivity of K&¥ everywhere, is obviously trivial, so we focus on the other side of the implication,
namely that K2¥(0) > 0 is also sufficient.
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The core of the proof is to show that
K& (y) > 0 for any y € R <= K*&(0) > 0. (3.65)
Indeed if we assume that this double implication is true, a straightforward computation yields

1 1 28
K& I - 2 ="
©) 2 + Qo (s + 2)ggV(0) Qo(s+2)

9 (0), (3.66)
since gy, is symmetric w.r.t. the origin and has a maximum at y = 0 (see Proposition B:2). The
result is then a trivial consequence of strict positivity of ggv(0).
In order to prove ([3.63]), we first observe that K&¥(+too) = 0 and K2 is smooth, so, if there was
a point yo where K®" becomes negative, it must be |yo| < +o00. Moreover as ggy, K" is symmetric
w.r.t. to the origin, so it suffices to consider y € R*. The derivative of K8V is easily computed
from the expression ([219):
K&'(y) = gevguy + 22095, (3.67)

and one immediately has that K&/ (0) = 0, i.e., K8 has a critical point there. Whether it is a
minimum or a maximum depends on s and {2y, but as we are going to see this does not matter.
We can in any case compute easily the second derivative of K8 exploiting once more (317):

\'%4 2 \'%
K" (y) = (ggy)” + 400y gevgoy + 2 [30%5% + Qo — u8¥ + 292 g2, (3.68)

Then we prove the crucial property of K&": suppose that K&’ has a maximum at y; > 0 and
then a minimum at y, > y;, then

K& (y2) o K& (1)
92,(y2) — g2, (y1)’

and in particular K8 (ys) > 0 if K&¥(y;) > 0.

To conclude the argument once ([3.69)) is proven, it is sufficient to observe that 8" has a critical
point in y = 0, which by parity must be either a maximum or a minimum: if it is a maximum,
then (B:69) shows that at any minimum point y2 > 0, K¥(y2) > 0. Notice that it does not matter
whether K8 has a single or multiple minima, because any minimum after the first requires the
presence of a preceding maximum point, where K8V is larger than its first minimum and therefore
positive. If on the opposite K8 has a minimum at the origin, then it means that there must be a
maximum at some y; > 0, where obviously K8"(y;) > K2Y(0) > 0 and we can repeat the argument
for any minimum after y;.

Let us now prove ([B:69): we assume again that K8 has a maximum in y; > 0 and a minimum
in yo > y1. Then it must be K& (y;2) =0, i.e.,

(3.69)

Jav(Y1,2) = —2Q0y1 295, (y1,2)- (3.70)

Moreover replacing this condition in (2.19) and (B.68)), we get

K& (y1,2) = {Qoil—gyfz + 3~ ey (1 - %ggv(?ﬂ,z))} 9o (Y1,2), (3.71)
K& (y12) = [93(5 - 2)%,2 +2Q — 2u8Y + %ggv(yu)] ng(yl,z)- (3.72)

Moreover
K& () <0 < K& (y), (3.73)

which implies

Q5 (s — 2)y7 + 200 — 2u+ 292, (1) < Q3(s — 2)y3 + 290 — 2u + 242, (12), (3.74)
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and using this inequality in the expression of K8 (ys), we obtain

K& () 5—2 4 2 5 ) 1 9 1,
> Q) — — - = gv _
ggv(?ﬂ) = OS T 2y1 WQQ(S +2) (ggv(QQ) ggv(yl)) + 5 QQ(S 1 2) 1% 27ngv(y2)
ng(yl) 1 5 5 ng(yl)
= - > ——— (3.75
ggv (yl) ﬂ'Qo(S + 2) (ggv(yl) ggV (yQ)) — ggv (yl) ( )

because by hypothesis yo > y1 and ggy is decreasing.

Notice that as a by-product of our analysis we found out that can have no global minima, since
infyecr K& (y) = 0 and therefore at any such minimum point yo, we would have K& (yy) = 0, but
this clearly contradicts (8.69). Hence if the inequality on r.h.s. of ([B.64) is strict then K&¥(y) >0
for any finite y. O

Proposition 310 introduces the equation ([Z7). The next step is obviously to prove that such an
equation as at least one solution:

Proposition 3.11 (Equation (7).
The equation (20

has at least one solution 2y > 0.

Proof. Let us first set

4 1
. gv 2
G(QO) T s+ 2 |:,U/ 27ngv(0):| )

so that (Z7) reads Qy = G(p). We will show that G(Qp) is asymptotically smaller than Qg (resp.
larger) Qg for large (resp. small) .
Let us first consider €y > 1: using the trivial bound || ggv||i < ggv||iO and the definition of
usY, we get
G(Q) < S%Eg".

If now we plug into £8V as a trial state the ground state of the harmonic oscillator hgse = —2 A +

2
%a2y2, we easily obtain

E5 < 1005+ 2 (1 n 0(951/2)) :
so that

G(9) < 25 (1 + 0(951/2)) < Q,

if Qg > 1, because s > 2.
On the other hand for small £y, thanks to the estimate (BI8) and again the definition of ug,

we have
() > 25 B,

To bound from below E#¥ for small €y, we can simply drop the kinetic term to get
E® > inf /dy {30%%p+ 50},
llelli=1Jr
i.e., a TF-like functional. By scaling we immediately obtain
it [y (oo s ) = Cod
plli=1JRr

as g — 0, so that
G(Q) > COY* > Qy,

for 2y small enough. O
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In the above Proposition we have not investigated the uniqueness of the solution. We indeed
expect that such a solution is in fact unique, but without a proof of this fact, we have to choose
Q. equal to the largest possible solution.

Now we turn our attention back to the cost function K: as K& it is given by the sum of a
the positive density %gf and the negative potential function F' (see next Proposition BI2)). In
addition g, is monotonically decreasing for y > yz, = o(1) and, like F', almost symmetric. Close
the boundary of the interval [—n, 7], g, gets extremely small (in fact exponentially small in £) but
F vanishes identically at £7. In conclusion it is clear that the overall positivity of K should then
emerge from a very delicate balance between the two opposite contributions.

We first state some simple properties of F' collected in the following

Proposition 3.12 (Properties of F).
The potential function defined in [B60) is such that

F(y) <0,  for anyy € [—n,7], (3.76)
F(+n) =0. (3.77)

Proof. One of the identities [B77) is trivial, the other is a direct consequence of (340). In order
to show that F'is negative everywhere we compute the derivative

F'(y) = t5 (20 + Q0% — Bie?) g2(v), (3.78)

and it is easy to verify that because of the first term F’(—n) < 0 while F’(n) > 0. Moreover
F’ vanishes at a single point yr = O(g?), where F' has a global minimum. Hence it is negative
everywhere in [—n, ). O

A very crucial piece of information about the potential function formulated in the next Propo-
sition is an alternative expression of it, which relies on the variational equation ([BI3) and is the
analogue of (3.G2) for F&".

Proposition 3.13 (Alternative expressions of F).
For any y € [—n,n] the potential function F admits the following alternative expressions

_ Q0 e 28 a? 2 1 2 R+(y)+R+, ifyzyﬁ*a
Fly)=-— )" +—5 [500 + 5 97— 1| G5 + Roy)+ R iy <y (3.79)
where
Ri(y) = 0(e?n)g2(y), Ry =—Qon’g%(£n) (1 +o(1)). (3.80)

Proof. We consider only the case y > 3, since the other one is analogous. The key ingredient of
the proof is an integration by parts, exactly as for ([B.62). We spell all the details nevertheless for
the sake of clarity. Thanks to the vanishing of F' at ), we have

F(y) = / At 57 (=29t — Qe + Bue?) gF = / dt 1527 92 0¢ (—Qt? — 3Q0%8% + Biet)
Y Y
= 1 (0% — 5Q0*0° + Be?n) G2 (1) — 1y (—Q0y” — 50277 + Bac®y) g2 (y)+
+ /y dt (—Qot* — gQoe*t? + f.e%t) [(1+§2y)2gf - (H;y)g*gi}
= —Qon?g(n)(1 +o(1)) + (Qy* + OE*n")) g2 (y)

— 2/ dt (1+s ) (—Qot2 — %9052t3 + 6*521?) gxg.. (3.81)
y
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We now rewrite the last term by reconstructing the potential Ug, and using the variational equation

BI3): since
(—Q0t? — 100283 + Boe?t) = 2 (1 + 24)Ug, (1)

2
+ mrn ($02t% — 1Q0(s — 2)But + Qoe?Bit? — 362B.%)

o 1
1+e2y

we obtain

72/ndt¥(fﬂ t? — 1Q0et? + B.e%t) gug, :4—%/ndt(1+52t)U () 9.9
” (1+€2y) 0 3 0 * * I x a2 Y ﬁ* * S x

n
+ 252/ dt (1+—1€2t) (%oﬁt?’ — 3Q0(s — 2)But + Qe?B,t? — %525*2) G5
y

400 (7
= a—QO dt (14 %) Us, (t)gxg. + O(*n")g5(y), (3.82)
Y

where we have used the bound ([42) and the monotonicity of g, for y > yg,. The first term on
the r.h.s. can be rewritten by means of (B.13):

490 K 290 n 2 /
[ aa e v wes = T3 [Taras s [Le) - ot
2Q0e% [ 4002 [
— / dt (g.)* — —3 / dt (14 &%t) t*o(t)guygl, =
a y a y
20 20
= =3 (1+%) [—atm) +mg?m)] = = (1+e%) [ (6.0)° = £lw) + g ()] -
200e2 [ 400e% [
+ = / dt {% (92)? + %gi‘—u*gf] -— / dt (1+ %) t20(t)g. g,
am Jy am Jy
20 20 )
= g () — — [3(6.0))° = 92 0) + 1g2()| + O0T)g2 ().
Putting together the above estimate with (B8] and (382)), we obtain the result. O

Thanks to Proposition B.13] the cost function K can also be expressed as

Qo

2% [a? 1 1 R +Ry, ify>ys.,
K(y) = = 0 a2y2__gi;+u*] gf-i—{ +(y) + Y = Ys. (3.83)

/2
* +— |55 By 3
0"+ 7 |10, T2 o R_(y)+R_, ity<uys.

This alternative expression will play an important role in the proof of its positivity, exactly as for
K#Y. Another important ingredient of the proof is also the closeness of K to K8 as e — 0:

Lemma 3.2. B
For any Qo >0 and y € A,
K(y) — K (y) = O(c*|loge[™). (3.84)

Proof. The result is a direct consequence of the pointwise estimate (B3.50]). O

The above Lemma in combination with Proposition might seem to give also the positivity
of K inside A,. However this is not the case because, although we proved that K" is positive
on the whole real line, we did not provide any lower bound to it. In fact even by just looking at
its minima, one could conclude from B8J) that K=" (y2) > K& (y1)gz, (y2)/95, (Y1), where ya, 1
are the positions of the minimum point and the preceding maximum point (consider for simplicity
the half-line RT). Now even if K& (y;) > C > 0 as it occurs for instance at the origin, the ratio
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between the densities can become extremely small in A,,. In addition to that the inequality holds
true only for the minima of K8 and it might be that it has no minimum inside -’Zn or A, in which
case we only know that it is positive there, but without any meaningful lower bound.

In fact we will be able to prove positivity of K only in domain strictly smaller than 4,, because
of the additional constant terms Ry in (B:83)), irrespective of their smallness. We thus set

As = {y € [-n,n) | gi(y) > n° max {gZ(n), g2 (-n)}}. (3.85)

By monotonicity of g, for large y is easy to see that As = [—y_,y4+] with y+ — 0o as e — 0.
Notice also that g, is very small at the boundary of A, although not as small as g.(n).
We can now state the main result of this Section:

Proposition 3.14 (Positivity of K).
If Qo > Q¢ as e — 0,
K(y) >0, for any y € A~. (3.86)

Proof. Asin the proof of positivity of K" in Proposition B.I0 the key idea is to show that positivity
at the origin is indeed sufficient to get the result. This in turn is easily inherited from positivity
of K& whenever Qy > Q,, via B84)): by (3.60)

K*&(0) > C >0,

but
K(0) — K#(0) = O(?| loge|),

and thus K(0) > C > 0 for a possibly different constant C'.

The rest of the proof follows the same line of reasoning of the proof of Proposition 310 There
are however two complications: first we have two alternative expressions of K in [yg,,n] and
[—7,ys,] respectively. Recall that yz, = o(1) denotes the unique maximum point of g,. Second
the presence of the constant terms Ry in ([B83)) is very annoying and in fact it is responsible of
the restriction to A-.

In order to handle the first issue it is sufficient to take into account the two intervals [yg, , 7]
and [—7, yg, ] separately and use a different expressions for K (see (B.83))).

The second issue on the other hand leads to the introduction of the modified cost function

K(y) == K(y) — 0-92(y) — R+ (3.87)

for some
0<d.<n <1 (3.88)

to be chosen later. Here we have used a compact notation to mean that we subtract Ry (resp.

R_) in [ys,,n] (vesp. [-n,ys.]).
Now we observe that if Qy > Q.

K(ys,) = K(0) 4 o(1) = K(0) + o(1) > 0, (3.89)

thanks to the pointwise estimate (.84 and since ||g.||, < C. It is interesting to remark that this
is the only point in the proof where we use the condition g > €., although several later estimates
are affected by this one. Moreover at the boundary of the domain we have

K(n) = (3 = 0.+ O(s*n")) g2 (£n) > 0. (3.90)

Therefore in order to exclude that K becomes negative, it suffices to prove that it is positive at
any possible global minimum point —n < y,,, < 7.
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We claim that, for Qg > €, any global minimum point y,, of K must satisfy the condition

[y | > 1. (3.91)

The reason is the pointwise estimate (384) and the observation contained in Proposition BI% K
and K& are pointwise close and therefore we would have

K& (y) < min[K(—n), K(n)] + o(1) < § min[gZ(—n), g7(n)] + o(1) = o(1),

which in turn implies K& (y,,) < 0 since K8V is independent of e. For g > . this contradicts
the statement of Proposition .10l N

The key point in the proof is the following property: let y,, be a point where K reaches its global
minimum K (y,,) < K(yg,) (otherwise there would be nothing to prove) and yy any maximum
point of K such that Yum < Ym, if Ym > yg,, Or yar > ym in the opposite case y,, < yg,. Notice
that such a maximum needs not to be the global maximum but its existence is a consequence of
smoothness of K and the inequalities

K(£n) < K(ys.),  K(ym) < K(ys.).

Then we are going to prove that

W) = @) T (3.92)

Now suppose that this is true, then we can pick a maximum point yy; of K where K (ymr) >

K(yp,) > C > 0. In addition it must be
yu = O(1), (3.93)

because K (y) < Cg*(y) and the decay estimate ([E2ZZ) or the pointwise estimate (F350) imply that
K(y) = o(1), if |y| > 1. Hence by the lower bound B22) g.(yar) > C > 0, B92)) yields

K(ym) > g2(um) (€K (y5.) + 0(1)) = Cogl(ym) > 0 (3.94)

for some Cy > 0. In fact we have obtained something more: for any y € A, either K (y) >
min{ K (—n), K(n)} > 0 or
% 1o 2
Ky) o Kym) Cg*Q(ym)

2@ - ew

Either way K is positive everywhere in [—n,n]. Moreover the positivity of K implies that
K(y) > Re +0:3(y) 2 0, if g3(y) > 67 'Ry,

for any y € A,,. If now we restrict the inequality to A and we choose, e.g., . = 13, the estimates
(B80) imply that inside A~

92 (y) = n° max {gZ(-n), g2 (n)} > Cn° max {g>(—n),g>(n)} > 67| R |,

so that K (y) is strictly positive for any y € As. In fact a closer look to the chain of inequalities
reveals that we have proven something more, i.e., for € small enough

K(y) > n%g(y),  foranyye As. (3.95)
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We have now to prove ([3.92). Recall the assumption: we have a global minimum of K at Ym
and a maximum at yas, which is on the left (resp. right) of y,, if ym > ys, (resp. ym < yg,). The
idea is the same used in the proof of Proposition B.I0F the derivative of K, i.e.,

I?/(y) = [(1—-0:)g, + Tlﬁy (QQO?J + Qoe?y® — ﬁ*EQ) g*} 9> (3.96)

must vanish both at ¥, and yy; and therefore

1
1-— 58)(1 + €2ym7M

gi(ym,M) = _( ) (QQoym,M + 905297271,M - 5*52) 9*(ym,M)- (3.97)

The second derivative of K can be computed as well:
K"(y) = (1-0.) (9.)" +4Q0yg.g. + [(1 = 62) (o + 22 — 2.) +20 + O(*°)] g7, (3.98)

so that at any extreme point of K , one has

K" (Y1) = [Q3(5 = 2)yz ar + 29 + 292 (Ym,mr) — 24 + 0(1)] 7 (Y1), (3.99)

where we have exploited the condition (B88). Similarly by (B83) we get

K(Ym,mr) = [on';—iyfn,M +5— mgf(ym,wf) - mm + 0(1)} 92 (Ym. 1), (3.100)

and a direct comparison between ([3.99) and (FI00) yields

K (ym —9 2 - I?” m
2(?/ M) _5=2  GWma) (y 2,M) +o(1). (3.101)
92(Ymar)  s+2  7Qo(s+2)  Qol(s+2)92(Ym,m)

Now this is the key identity because by assumption (recall also ([B.91]))

K"(yar) S0< K (ym),  gu(ym) < gu(yar),

so that _ _

K(?Jm) > K(yM)
93 (ym) — 93 (ynr)
ie., (B92) is proven. Note that the fact that we have two different explicit expressions of K for

y > yg, and y < yg, did not affect the proof, because the difference between the two expressions
is o(1) and therefore can be included in the error term. O

+ o(1),

4 Energy Asymptotics

We attack in this Section the proof of Theorem 2:2] which will imply the main result of the paper.
The result is obtained by combining upper (Proposition 1)) and lower (Proposition £2]) bounds
on ECP.

4.1 Upper Bound

The upper bound on EC? is stated in next

Proposition 4.1 (GP energy upper bound).

Ase — 0,
ap EYY
B < 2+ 0(). (4.1)
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Proof. The proof is rather simple because it is sufficient to test £5F on suitable trial function of
the form .
U rial (X) 1= mgmal ('xl—;l) exp {i [+ S«] 0}, (4.2)

where gl coincides up to a normalization constant with g, within A, and is suitably regularized
outside. The calculation is rather straightforward and we omit it for the sake of brevity. Note
that the remainder O(1) is entirely due to the fact that the phase Q + S, might not be an integer
number. Otherwise one would obtain a much better error term O(g%). O

4.2 Lower Bound

A lower bound for ESY matching the upper bound of Proposition Bl is formulated in next

Proposition 4.2 (GP energy lower bound).
If Qo > Q¢, ase — 0,

ECP > B + 0(e™) (4.3)
> — : .

Proof. We first restrict the integration in the GP energy functional to the domain A, (recall its
definition in ([B2): to this purpose we just have to observe that all the three terms in the GP
energy functional are pointwise positive and thus we can simply drop their integrals outside A,,.
Of course ¥ is not normalized in L?(A,) but the exponential decay proven in Proposition
guarantees that

HwGPHN(An) =1+ 0(e™), (4.4)

by taking 1o large enough.

The first step in the proof is a splitting of the energy, in order to extract the leading order term
E%Y/e*. This is now rather standard and we do not spell all the details of the computation. We
just note that one sets

VP (x) = u(z,9) gi (L52) e (@H8°, (4.5)

1
\2me
Since 2 + 5, needs not to be an integer, u is not single-valued in general, but

w(z, 9 + 2kn) = e 2RO+ B) (2 9), (4.6)

for any k € Z. A part from that v is finite for any x € A, thanks to the strict positivity of g.. A
long but simple computation using the variational equation for g, gives

ESY  Elu)
=4

ECGP >
et 2me?

+O(E™), (4.7)

where the inequality is mainly due to the restriction of the integration domain and setting y =
1+ 22 for short

) = [ ax g2w) {3190 + -G+ a1 - P2} (4.8)
a(x) == (Q —;ﬁ* - Qx) ey, (4.9)

and the superfluid current is defined in (ZI0). The rest of the proof is devoted to prove that

Elu] > O(E™). (4.10)
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In order to exploit the cost function trick mentioned in Section 2] and the positivity of K
proven in Proposition 314} we need to restrict again the integration domain in E[u] to AP C A,),
where

AP ={xeR?| [1—|x]| /e? € A5 }.

The only annoying term is the only one which is not positive, i.e., the second one in [3J]):

[T
n >

=Cn’ /A \.A2D dx |wGP‘ ‘vﬁwGP‘ < Ce?ypt HwGPHLw(An\AgD) vaGPHLw(An)
n >

<l [, B0 Vo

WA>

S 0574774 HQ/JGPHLOC(_ATI\_A?D) ? (411)

where we have used the bound vaGPHLx(A ) < Ce~5, following from

1Vl < € (IAVIL 19127 + 1l ) - (4.12)
which can be proven from Gagliardo-Nirenberg inequalities exactly as in [CRY] Lemma 5.1]. How-
ever the lower bound ([B:22) easily implies that if we set As =: [—y_, y], then

Y+ = 77(1 + 0(1))a
so that
V5P| 0 < O() (113)

again by ([BI9) and the arbitrariness in the choice of 7. Hence [II]) yields an error which can
be made smaller than any power of € and we get the lower bound

E[u]z/AD

2
>

ax g2(y) {3 1Vul* +a-ju + 7 g?(n) (1= [uP)*} + OE™).  (4.14)
We can now finally integrate by the angular momentum term by using the potential function

F defined in (360): it is trivial to verify that

297 (551) a(z) = =0, F (%52) ey, (4.15)

52

so that

1 27 1+82y+
/A dx ¢2(y)a-ju, = —5/ dﬂ/ dz 0, F (25%) R [iu(z, 9)Ogu* (2, 0)]
b 0 1

—e2y_

1 2w 1+62y+
= 5/ dy da F (251) R [i0u(z, 9)0gu™ (z,9) + iu(z,9)02 yu*(z,9)]
0 1—e2y_
1 [27 1+e?
_ 5/ a0 [ (22) R fiuga, 9)ogu (@, 0)]| "7 (416)
0 —e2y_

The boundary term can be easily proven to provide an exponentially small correction: consider,
e.g., the term at 1 + g2y, since |F(y+)| < Cn®g?(£n), one can reconstruct a term, which can be
bounded exactly as (£I1)). The result is an error O(£°°). The rest is integrated by parts once more
but this time w.r.t. J:

1 27 14e?y4
= / dy da F (%51) R [iu(x, 9)02 gu*(z, V)]
0

€ T
2 1—e2y_

1 27 1+62y+
= —5/ dy dz F (%2) R [i0pu(z, 9)0zu™(x, V)],
0

P
2
1—e2y_
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where the vanishing of boundary terms is due to the periodicity of u*d,u and its complex conjugate
(compare with ([@6])). Altogether we have thus obtained that

/ dx ¢2(y) a-ju = / dx F (””8_21) R [V pu(z, ) Vou*(z,9)] + O(e™)
AP

2D
A>

>/A2>D dx |F (55| [Val® + 0(®) = = [ ax P (552) [Vul® + O(), (417)

- 82
AP
and therefore

> [ ax {0 () 190 + Tt - W)+ o)

>

> [ dxg ) [Val® + 0EF) 2 0, (@413)
AZD

>

thanks to Proposition B.I4] and in particular (3.95]). O

5 Giant Vortex Transition

In this Section we prove the results regarding absence of vortices and total vorticity of the conden-
sate.

Proof of Theorem [21l Combining (I8) with (1) and the upper bound proven in Proposition
ET we get

[ dxatw - Py = o), (5.1
AzP
which already means that |u| can not differ too much from 1. To deduce the pointwise estimate of
Theorem 2] we need to combine this with an estimate of ||Vul| .

As in [CRY] Lemma 4.3] we obtain from (LI6) and B.I5) the following variational equation

for wu:

~ 1gp8u— Lgldu—ig.a- Vut Legd (Jul = 1) u= (1" ~ L) gu,  (52)

which yields (recall the definition of Apux C A2 in ([2J))

1Al gy < C (7201 e ayy + 2707

Abulk

Now using the elliptic estimate (£I2]) we conclude that
- sa
IVl o pyy = © (720 %). (5.3)

Suppose now that it exists xg € Apun such that [u(xg) — 1| > €'/?|logel|®, for some b > 0 to
be chosen later. Then from (5.3) we get that

lJu| — 1] > 31/2|loge|’, for x € B, (x0) N Ag,

with o = £%/2|loge|’~1~ %, and

2 e
0(e%) = / dx g}(y) (1- [ul?)” > Ce9| log g|?0=72=2,
ApbuikNB, (x0)

which is a contradiction for all b > 4a — 1. O
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We now focus on the proof of Theorem 2.3 and for later purposes we state a useful Lemma, which
is the analogue of [CPRY3| Lemma 3.5]:

Lemma 5.1.
Let Q¢ > Q¢ and R be a radius satisfying R =1+ O (52), then

|deg (u, 0Bgr)| = O(1) (5.4)

Proof. We use a smooth radial cut-off function y with support in [1:1;, R] such that X(E) =0 and
X(R) = 1, for some radius
R=R—c?

with ¢ > 0. We also require that |x| < 1 and |[Vx| = O(¢~2). Then by Stokes formula

1 1
deg (u, 0BR) = — do Vouy _ 1 do x(R) S Vou
i OBr u T OBr U

1
- —/ dx Vty - S <@> (5.5)
T BR\BE U

Therefore

1/2

C Vu c
des(uoBl < 5 [ ax < 1B Bl ey (50)
rR\Bg

T e |ul

where we used that ||1 — |“|||L°°(BR\B§) = 0(1). Now the result proven in Proposition 310 in fact
says that for any x € Bg \ B and for Qg > €, there exists a constant C' > 0 such that

K (55 = €

and thanks to (3:84]) the same inequality holds true for K, i.e.,

K (=) >0 >0, for any x € Br \ Bg. (5.7)

62

Going back to [I]) this yields

O(e?) > / dx K (251) |Vul> > / dx K (£5) |Vul? > ClIVull p2g 5.y »
A2ZD Br\Bz R

which gives the result once plugged into (5.6]). O
We are now in position to complete the estimate of the winding number of 1)GF:

Proof of Theorem [Z23. We follow [CPRY3], proof of Theorem 1.5]. The positivity of [1xT| on 0Br
is guaranteed for any radius R =1+ O (52) thanks to [29)). A simple computation shows that

deg (7, 0BR) = Q + B, + deg (u, 0BR)

which yields the result in combination with (54)). O
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